FINGER SEAL DEVELOPMENT FOR A COMBUSTOR APPLICATION

Arun Kumar Honeywell Engines & Systems Phoenix, Arizona

Finger Seal Development for a Combustor Application

presented at

NASA Seal/Secondary Air System Workshop NASA Glenn Research Center Cleveland, Ohio

by

Arun Kumar Honeywell Engines & Systems Phoenix, Arizona

Work presented was partially supported by the Naval Air Warfare Center under Contract No. N00421-97-C-1049

Finger seal laminate stack design ...

... leads to low manufacturing cost

Engine Layout showing Seal Locations

Seal/Secondary Air System Workshop, 25-26 Oct 2000, NASA Glenn Research Center, Cleveland, Ohio.

Seal cross-section and laminates

Design Requirement

Engine Requirement

- 6,000 hours operational life
- 7,500 LCF cycles for hot parts

Finger Seal Requirement

- Low radial force applied on CMC combustor liner under all conditions
- Radial deflection capability as below:

	Radial Deflection		
	Build	Steady State	Max Transient
Outer seal (without combustor offset)	0.002"	0.032"	0.044"
Inner Seal (without combustor offset)	0.050"	0.028"	0.015"

Finger seal material

Materials being considered

- AS800 mono-ceramic (Silicon Nitride)
- MA-956 (Fe based high temperature superalloy, high creep resistance,)
- Haynes-188 (Co based high temperature superalloy, good oxidation resistance)

Materials used for the test

- MA-956 for inner seal
- Haynes-188 for outer seal

Finite Element Analysis was used...

Stress distribution due to pressure drop

Stress distribution due to radial motion

... to ensure meeting design requirements

Cold flow testing at operating interference

Cold flow testing data...

... validated design air leakage

Inner seal: pre- and post-test comparison...

Material: MA-956 (Fe based superalloy)

pre-test laminates

post-test laminates

... showed superficial oxidation but no distress

Outer seal : post-test inspection...

Material: HA-188 (Co based superalloy)

post-test laminates

... showed slight handling damage but no distress

Seal material: AS800 mono-ceramic

- Ceramic Components, Honeywell, has developed cost-effective manufacturing feasibility of AS800 mono-ceramic laminate segments.
- Full scale ceramic seal testing planned in 2001.

Conclusions

- Finger seals met sealing requirements of a CMC (ceramic matrix composite) combustor
- Finger seals were found to be a cost effective option for CMC combustor sealing
- High temperature superalloys were investigated as potential finger seal materials
 - HA188, MA956 meet rig requirements
 - AS800 mono-ceramic being developed for engine